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The Pandemic and Student Learning

Researchers and policymakers are starting to examine how the
COVID-19 pandemic has affected (and will continue to affect)
students’ academic growth.

“Learning loss” analyses will require new and innovative methods for
evaluating educational assessment data (e.g., Ho, 2021).

An overarching question for these analyses concerns the extent to
which we can appropriately compare 2021 test scores to those from
before the pandemic.
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The Missing Data Problem

One potential roadblock to generating valid skip-year comparisons is
anticipated missingness in the 2021 data.

Factors like differential rates of participation and “opt-out” testing can
introduce non-ignorable missingness patterns.

Can we create “adjusted” test scores for 2021 that allow researchers
and policymakers to adequately understand students’ learning
trajectories?
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Multiple Imputation

Multiple imputation (MI) uses information from the observed data to
generate model parameter estimates through three steps:

Imputation: A prediction model generates a set of plausible values for
the missing observations, resulting in M imputed data sets.

Analysis: The analysis (e.g., regression, student growth percentiles) is
conducted on each of the M data sets.

Pooling: Parameter estimates are constructed by pooling across the M
analyses.

In the context of learning loss analyses, researchers may implement MI to
estimate mean scale score or student growth percentile (SGP) values.

Enders, 2010; Fox & Weisberg, 2018; van Buuren, 2018
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Simulation Overview: Procedure

Observations were amputed from a simulated data set (available in the
SGPdata R package; Betebenner et al., 2021).

Missingness types:
Missing completely at random (MCAR)
Missing at random based on status and demographics (MAR Demog)
Missing at random based on status and growth (MAR Growth)

Either 30%, 50%, or 70% of the data were simulated as missing.

MI was then used to generate “adjusted” mean scale scores and
student growth percentiles.
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Simulation Overview: MI Methods

Six MI methods were examined using the mice R package (van Buuren &
Groothuis-Oudshoorn, 2011):

Cross-sectional multi-level modeling with the pan package (L2PAN; Zhao &
Schafer, 2018)

Cross-sectional multi-level modeling with the lmer function (L2LMER; Bates
et al., 2015)

Longitudinal multi-level modeling with pan (L2PAN_LONG)

Longitudinal multi-level modeling with lmer (L2LMER_LONG)

Quantile regression (RQ)

Predictive mean matching (PMM)

These methods were also compared to when no imputation was
implemented (i.e., “Observed”).
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Simulation Overview: Evaluation

Percent Bias

Calculated as
∣∣ Raw Bias

True Value
∣∣ × 100

Ideally less than 5% (Miri et al., 2020; Qi et al., 2010)

Confidence Interval (CI) Coverage Rate

Calculated as the proportion of times that the simplified CI (Vink & van
Buuren, 2014) contains the true value

Ideally as close to 1 − α as possible (Demirtas, 2004; Qi et al., 2010)

Simplified F1 Statistic

Tests the null hypothesis that the true and imputed values are equivalent

The p-value should ideally be greater than α (van Buuren, 2018)
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MI Method Comparison: Scale Scores

Figure 1: Scale score percent bias by imputation method, missingness percentage,
and missingness type
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MI Method Comparison: Scale Scores

Figure 2: Scale score coverage rate by imputation method, missingness percentage,
and missingness type
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MI Method Comparison: Scale Scores

Figure 3: Proportion of times that the imputed scale score differed from the true
value based on the simplified F1 statistic
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MI Method Comparison: SGPs

Figure 4: SGP percent bias by imputation method, missingness percentage, and
missingness type
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MI Method Comparison: SGPs

Figure 5: SGP coverage rate by imputation method, missingness percentage, and
missingness type

Allie Cooperman CFA Internship Presentation 1 June 4, 2021 12 / 25



MI Method Comparison: SGPs

Figure 6: Proportion of times that the imputed SGP differed from the true value
based on the simplified F1 statistic
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MI Method Comparison: Basic Regression Models

Table 1: Linear fixed-effect regression models for absolute scale score or SGP bias;
coefficients with p < 0.01 are bolded.

Scale Scores SGPs

Grade/Content Area Size -0.01 (0.00) -0.02 (0.00)
50% Missing 2.76 (0.25) 1.57 (0.09)
70% Missing 5.86 (0.60) 3.13 (0.15)
MAR with Demographics 3.60 (0.42) 0.55 (0.07)
MAR with Growth 8.27 (1.26) 0.59 (0.08)
L2LMER_LONG 1.12 (0.84) 2.58 (0.28)
L2PAN_LONG -3.36 (0.53) 2.31 (0.28)
L2LMER 2.96 (0.31) 2.64 (0.26)
L2PAN -4.62(0.85) 0.10 (0.10)
RQ -3.92 (0.66) 1.85 (0.26)
PMM -3.91 (0.69) 1.75 (0.26)
R2 0.36 0.18
Within R2 0.34 0.17
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MI Method Comparison: Summary

The percent bias tends to be lower when imputing scale scores as
compared to SGPs.

MI efficacy declines with smaller grade/content area size, higher
missingness percentages, and when data are missing at random based
on status and growth.

L2PAN demonstrates the relative best performance among the
examined MI methods, as evidenced by

relatively smaller percent bias;
higher coverage rates; and
fewer statistically significant F1 statistics.
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Characteristics Influencing L2PAN Efficacy: Scale Scores

Figure 7: Average scale score percent bias by grade/content area size quantile,
grade, and missingness characteristics
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Characteristics Influencing L2PAN Efficacy: Scale Scores

Figure 8: Average scale score coverage rate by grade/content area size quantile,
grade, and missingness characteristics
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Characteristics Influencing L2PAN Efficacy: SGPs

Figure 9: Average SGP percent bias by grade/content area size quantile, grade,
and missingness characteristics
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Characteristics Influencing L2PAN Efficacy: SGPs

Figure 10: Average SGP coverage rate by grade/content area size quantile, grade,
and missingness characteristics
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Summary

Based on percent bias, CI coverage rates, and the simplified F1
statistic, cross-sectional L2PAN method generally outperforms the
other MI methods when imputing mean scale scores and SGPs.

MI with L2PAN tends to perform worse among cases of smaller
grade/content area sizes, when higher percentages of data are missing,
and when data are missing based on status and growth.

Patterns of MI efficacy differ based on whether the scale scores or
SGPs are being imputed.
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Recommendations

It is important that researchers and policymakers examine their
missingness patterns prior to imputation.

MI should be used with great caution when more than 50% of the data
are missing (and note that missingness rates may differ among schools).

Individualized analyses should include diagnostic checks to examine the
MI performance with a particular set of data (for a review, see Nguyen
et al., 2017; Stuart et al., 2009)
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Future Directions

Fit a series of more complex generalized linear models to better
understand the relationships among the simulation design factors and
MI efficacy.

Replicate analyses using simulated data that incorporates a “Covid
effect.”

Consider ways to improve MI for lower grades (if improvement is even
possible).

Explore the possibility of propensity score weighting for drawing
appropriate comparisons between 2019 and 2021.
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