In a previous vignette, we examined the efficacy of multiple imputation (MI) for dealing with missing scale score and student growth percentile (SGP) data. A simulation was conducted wherein observations were systematically removed from a synthetic data set (from the SGPdata
R package; Betebenner et al., 2021). The results indicated that in many contexts, the cross-sectional L2PAN imputation method is a viable approach for creating “adjusted” scale scores and SGPs. Importantly, L2PAN generally performed best in conditions of (a) lower missingness percentages, (b) data missing completely at random, and (c) larger school sizes.
The simulation was replicated to incorporate a COVID-19 impact within the synthetic data from SGPdata
. This vignette summarizes the results of this “impact” simulation. As before, data were amputed with patterns of missing completely at random (MCAR), missing at random (MAR) based on status and growth, or MAR based on status and demographics. Moreover, either 30%, 50%, or 70% of the observations were systematically removed (although note that the missingness percentage could vary by school even within each of these three levels). Six imputation methods were compared, with some slight differences from the previous “without impact” simulation:
pan
(L2PAN);pan
(L2PAN_LONG);Like the previous simulation, we also compared these methods to the “Observed” condition, when no imputation was done. All MI analyses were conducted using the mice
package (van Buuren & Groothuis-Oudshoorn, 2011), with calls to corresponding R packages (e.g., pan
[Zhao & Schafer, 2018]). Here, we focus on the ability of these MI methods to accurately impute either mean scale scores or SGPs.
This vignette structure largely mirrors the summary from the “without impact” simulation. We use the following three indices to operationalize MI performance:
We first examine the results across the various design factors (e.g., type and percentage of missingness, grade and content area, MI method, etc.). We hope to elucidate whether one or more MI methods outperforms the others in terms of reduced bias and high coverage rates.
L2PAN
|
L2PAN_LONG
|
RQ
|
RF
|
L2PMM
|
PMM
|
Observed
|
||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
|||||||||||||||
Grade | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP |
30% Missing | ||||||||||||||||||||||||||||
3 | 0.210 | 0.921 | 0.210 | 0.921 | 0.216 | 0.914 | 0.226 | 0.928 | 0.220 | 0.912 | 0.221 | 0.960 | 0.221 | 0.960 | ||||||||||||||
4 | 0.190 | 0.927 | 0.190 | 0.927 | 0.194 | 0.924 | 0.206 | 0.933 | 0.203 | 0.914 | 0.200 | 0.966 | 0.200 | 0.966 | ||||||||||||||
5 | 0.169 | 2.916 | 0.950 | 0.950 | 0.220 | 3.712 | 0.945 | 0.911 | 0.394 | 6.033 | 0.858 | 0.843 | 0.204 | 3.233 | 0.950 | 0.940 | 0.370 | 5.878 | 0.950 | 0.917 | 0.390 | 5.932 | 0.865 | 0.858 | 0.390 | 5.932 | 0.865 | 0.858 |
6 | 0.154 | 3.147 | 0.952 | 0.947 | 0.252 | 3.981 | 0.921 | 0.874 | 0.377 | 6.483 | 0.806 | 0.785 | 0.216 | 3.879 | 0.936 | 0.919 | 0.361 | 6.458 | 0.950 | 0.899 | 0.377 | 6.456 | 0.807 | 0.799 | 0.377 | 6.456 | 0.807 | 0.799 |
7 | 0.127 | 1.932 | 0.947 | 0.955 | 0.268 | 2.815 | 0.856 | 0.879 | 0.326 | 4.761 | 0.752 | 0.753 | 0.154 | 2.383 | 0.930 | 0.920 | 0.311 | 4.886 | 0.938 | 0.893 | 0.322 | 4.696 | 0.757 | 0.765 | 0.322 | 4.696 | 0.757 | 0.765 |
8 | 0.134 | 2.527 | 0.944 | 0.942 | 0.171 | 3.222 | 0.905 | 0.861 | 0.376 | 6.439 | 0.716 | 0.679 | 0.184 | 3.276 | 0.922 | 0.900 | 0.374 | 6.745 | 0.914 | 0.838 | 0.378 | 6.450 | 0.717 | 0.693 | 0.378 | 6.450 | 0.717 | 0.693 |
50% Missing | ||||||||||||||||||||||||||||
3 | 0.338 | 0.905 | 0.338 | 0.905 | 0.339 | 0.896 | 0.373 | 0.890 | 0.366 | 0.882 | 0.362 | 0.964 | 0.362 | 0.964 | ||||||||||||||
4 | 0.287 | 0.914 | 0.287 | 0.914 | 0.297 | 0.908 | 0.335 | 0.900 | 0.316 | 0.887 | 0.318 | 0.975 | 0.318 | 0.975 | ||||||||||||||
5 | 0.310 | 4.943 | 0.942 | 0.945 | 0.355 | 5.743 | 0.893 | 0.846 | 0.652 | 9.853 | 0.787 | 0.767 | 0.388 | 6.084 | 0.904 | 0.882 | 0.635 | 9.760 | 0.932 | 0.889 | 0.649 | 9.734 | 0.802 | 0.791 | 0.649 | 9.734 | 0.802 | 0.791 |
6 | 0.280 | 5.488 | 0.945 | 0.941 | 0.442 | 6.822 | 0.850 | 0.791 | 0.617 | 10.518 | 0.724 | 0.706 | 0.390 | 6.884 | 0.879 | 0.847 | 0.584 | 10.249 | 0.950 | 0.898 | 0.611 | 10.400 | 0.744 | 0.729 | 0.611 | 10.400 | 0.744 | 0.729 |
7 | 0.205 | 3.445 | 0.948 | 0.946 | 0.386 | 3.930 | 0.763 | 0.790 | 0.506 | 7.694 | 0.702 | 0.682 | 0.283 | 4.546 | 0.877 | 0.845 | 0.514 | 8.049 | 0.930 | 0.878 | 0.510 | 7.653 | 0.717 | 0.699 | 0.510 | 7.653 | 0.717 | 0.699 |
8 | 0.225 | 3.999 | 0.938 | 0.941 | 0.289 | 5.271 | 0.811 | 0.767 | 0.642 | 10.778 | 0.601 | 0.566 | 0.356 | 6.285 | 0.845 | 0.806 | 0.658 | 11.433 | 0.893 | 0.816 | 0.643 | 10.725 | 0.612 | 0.587 | 0.643 | 10.725 | 0.612 | 0.587 |
70% Missing | ||||||||||||||||||||||||||||
3 | 0.548 | 0.900 | 0.548 | 0.900 | 0.571 | 0.909 | 0.574 | 0.825 | 0.572 | 0.863 | 0.642 | 0.970 | 0.642 | 0.970 | ||||||||||||||
4 | 0.424 | 0.915 | 0.424 | 0.915 | 0.443 | 0.917 | 0.457 | 0.848 | 0.450 | 0.871 | 0.541 | 0.977 | 0.541 | 0.977 | ||||||||||||||
5 | 0.525 | 8.319 | 0.945 | 0.943 | 0.487 | 8.918 | 0.813 | 0.744 | 0.919 | 13.843 | 0.751 | 0.722 | 0.632 | 9.819 | 0.855 | 0.816 | 0.906 | 13.737 | 0.928 | 0.880 | 0.918 | 13.751 | 0.768 | 0.753 | 0.918 | 13.751 | 0.768 | 0.753 |
6 | 0.446 | 8.435 | 0.941 | 0.934 | 0.637 | 9.360 | 0.743 | 0.689 | 0.852 | 14.563 | 0.688 | 0.656 | 0.612 | 10.751 | 0.813 | 0.773 | 0.832 | 14.507 | 0.928 | 0.869 | 0.849 | 14.402 | 0.705 | 0.686 | 0.849 | 14.402 | 0.705 | 0.686 |
7 | 0.331 | 5.076 | 0.945 | 0.942 | 0.588 | 5.615 | 0.642 | 0.660 | 0.731 | 10.782 | 0.664 | 0.650 | 0.466 | 7.201 | 0.790 | 0.769 | 0.732 | 11.124 | 0.920 | 0.873 | 0.726 | 10.731 | 0.671 | 0.670 | 0.726 | 10.731 | 0.671 | 0.670 |
8 | 0.391 | 6.547 | 0.934 | 0.926 | 0.402 | 7.316 | 0.704 | 0.636 | 0.899 | 14.900 | 0.563 | 0.527 | 0.583 | 9.989 | 0.756 | 0.700 | 0.926 | 15.762 | 0.893 | 0.810 | 0.901 | 14.980 | 0.573 | 0.544 | 0.901 | 14.980 | 0.573 | 0.544 |
L2PAN
|
L2PAN_LONG
|
RQ
|
RF
|
L2PMM
|
PMM
|
Observed
|
||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
|||||||||||||||
Grade | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP |
30% Missing | ||||||||||||||||||||||||||||
3 | 0.606 | 0.848 | 0.606 | 0.848 | 0.598 | 0.832 | 0.693 | 0.793 | 0.599 | 0.831 | 0.620 | 0.904 | 0.620 | 0.904 | ||||||||||||||
4 | 0.524 | 0.847 | 0.524 | 0.847 | 0.528 | 0.837 | 0.636 | 0.779 | 0.536 | 0.825 | 0.521 | 0.923 | 0.521 | 0.923 | ||||||||||||||
5 | 0.264 | 4.456 | 0.943 | 0.902 | 0.483 | 6.118 | 0.865 | 0.726 | 0.405 | 6.390 | 0.840 | 0.819 | 0.289 | 4.526 | 0.918 | 0.886 | 0.481 | 6.502 | 0.958 | 0.906 | 0.395 | 6.230 | 0.855 | 0.854 | 0.395 | 6.230 | 0.855 | 0.854 |
6 | 0.222 | 4.238 | 0.928 | 0.889 | 0.381 | 5.773 | 0.849 | 0.706 | 0.366 | 6.527 | 0.800 | 0.789 | 0.260 | 4.714 | 0.907 | 0.878 | 0.416 | 6.708 | 0.966 | 0.913 | 0.365 | 6.572 | 0.816 | 0.812 | 0.365 | 6.572 | 0.816 | 0.812 |
7 | 0.221 | 3.916 | 0.917 | 0.890 | 0.426 | 5.616 | 0.740 | 0.691 | 0.344 | 5.642 | 0.766 | 0.728 | 0.217 | 3.422 | 0.896 | 0.870 | 0.435 | 5.947 | 0.949 | 0.875 | 0.345 | 5.577 | 0.776 | 0.748 | 0.345 | 5.577 | 0.776 | 0.748 |
8 | 0.207 | 3.466 | 0.924 | 0.911 | 0.324 | 5.063 | 0.810 | 0.691 | 0.446 | 7.391 | 0.680 | 0.664 | 0.266 | 4.799 | 0.860 | 0.823 | 0.487 | 7.830 | 0.930 | 0.849 | 0.446 | 7.396 | 0.697 | 0.696 | 0.446 | 7.396 | 0.697 | 0.696 |
50% Missing | ||||||||||||||||||||||||||||
3 | 1.102 | 0.799 | 1.102 | 0.799 | 1.104 | 0.775 | 1.248 | 0.681 | 1.106 | 0.775 | 1.163 | 0.882 | 1.163 | 0.882 | ||||||||||||||
4 | 0.924 | 0.797 | 0.924 | 0.797 | 0.941 | 0.788 | 1.095 | 0.670 | 0.939 | 0.773 | 0.947 | 0.907 | 0.947 | 0.907 | ||||||||||||||
5 | 0.420 | 6.936 | 0.946 | 0.921 | 0.878 | 9.262 | 0.772 | 0.667 | 0.652 | 10.177 | 0.788 | 0.768 | 0.529 | 7.742 | 0.868 | 0.842 | 0.812 | 10.324 | 0.954 | 0.903 | 0.642 | 10.043 | 0.810 | 0.801 | 0.642 | 10.043 | 0.810 | 0.801 |
6 | 0.375 | 6.879 | 0.924 | 0.898 | 0.609 | 9.333 | 0.768 | 0.603 | 0.608 | 10.568 | 0.722 | 0.704 | 0.462 | 8.006 | 0.837 | 0.809 | 0.671 | 10.619 | 0.958 | 0.886 | 0.607 | 10.605 | 0.744 | 0.730 | 0.607 | 10.605 | 0.744 | 0.730 |
7 | 0.359 | 5.764 | 0.917 | 0.888 | 0.671 | 8.276 | 0.629 | 0.566 | 0.545 | 8.666 | 0.700 | 0.673 | 0.364 | 5.586 | 0.839 | 0.811 | 0.671 | 8.780 | 0.959 | 0.885 | 0.546 | 8.628 | 0.714 | 0.700 | 0.546 | 8.628 | 0.714 | 0.700 |
8 | 0.343 | 5.702 | 0.925 | 0.909 | 0.557 | 8.325 | 0.692 | 0.560 | 0.685 | 11.446 | 0.601 | 0.579 | 0.452 | 7.883 | 0.776 | 0.742 | 0.778 | 12.047 | 0.935 | 0.829 | 0.696 | 11.527 | 0.620 | 0.610 | 0.696 | 11.527 | 0.620 | 0.610 |
70% Missing | ||||||||||||||||||||||||||||
3 | 1.715 | 0.772 | 1.715 | 0.772 | 1.754 | 0.746 | 1.963 | 0.574 | 1.741 | 0.747 | 1.797 | 0.865 | 1.797 | 0.865 | ||||||||||||||
4 | 1.452 | 0.782 | 1.452 | 0.782 | 1.491 | 0.768 | 1.689 | 0.587 | 1.503 | 0.750 | 1.549 | 0.899 | 1.549 | 0.899 | ||||||||||||||
5 | 0.644 | 9.981 | 0.956 | 0.938 | 1.428 | 12.162 | 0.664 | 0.617 | 0.916 | 14.049 | 0.765 | 0.729 | 0.830 | 11.344 | 0.809 | 0.800 | 1.175 | 13.956 | 0.949 | 0.901 | 0.904 | 13.905 | 0.782 | 0.764 | 0.904 | 13.905 | 0.782 | 0.764 |
6 | 0.575 | 10.122 | 0.925 | 0.907 | 0.865 | 13.694 | 0.657 | 0.485 | 0.862 | 14.388 | 0.678 | 0.655 | 0.714 | 11.610 | 0.773 | 0.747 | 0.971 | 14.324 | 0.958 | 0.884 | 0.851 | 14.396 | 0.698 | 0.677 | 0.851 | 14.396 | 0.698 | 0.677 |
7 | 0.529 | 8.140 | 0.914 | 0.896 | 0.862 | 10.936 | 0.538 | 0.450 | 0.781 | 12.022 | 0.659 | 0.629 | 0.588 | 8.402 | 0.768 | 0.741 | 0.876 | 11.539 | 0.958 | 0.876 | 0.783 | 11.995 | 0.683 | 0.652 | 0.783 | 11.995 | 0.683 | 0.652 |
8 | 0.565 | 9.367 | 0.911 | 0.895 | 0.857 | 12.834 | 0.556 | 0.445 | 0.943 | 15.907 | 0.584 | 0.544 | 0.720 | 11.890 | 0.699 | 0.651 | 1.045 | 15.983 | 0.935 | 0.813 | 0.956 | 15.865 | 0.588 | 0.563 | 0.956 | 15.865 | 0.588 | 0.563 |
L2PAN
|
L2PAN_LONG
|
RQ
|
RF
|
L2PMM
|
PMM
|
Observed
|
||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
|||||||||||||||
Grade | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP |
30% Missing | ||||||||||||||||||||||||||||
3 | 1.467 | 0.463 | 1.467 | 0.463 | 1.464 | 0.443 | 1.534 | 0.420 | 1.439 | 0.462 | 1.464 | 0.549 | 1.464 | 0.549 | ||||||||||||||
4 | 1.295 | 0.457 | 1.295 | 0.457 | 1.301 | 0.426 | 1.367 | 0.399 | 1.276 | 0.437 | 1.292 | 0.545 | 1.292 | 0.545 | ||||||||||||||
5 | 0.345 | 5.071 | 0.935 | 0.899 | 0.553 | 6.213 | 0.864 | 0.763 | 0.413 | 6.312 | 0.793 | 0.822 | 0.366 | 4.881 | 0.887 | 0.887 | 0.617 | 6.429 | 0.968 | 0.901 | 0.389 | 6.262 | 0.852 | 0.845 | 0.389 | 6.262 | 0.852 | 0.845 |
6 | 0.301 | 5.143 | 0.898 | 0.868 | 0.521 | 6.079 | 0.751 | 0.709 | 0.380 | 6.683 | 0.769 | 0.778 | 0.310 | 5.016 | 0.881 | 0.877 | 0.539 | 6.734 | 0.978 | 0.902 | 0.378 | 6.737 | 0.815 | 0.799 | 0.378 | 6.737 | 0.815 | 0.799 |
7 | 0.289 | 4.257 | 0.902 | 0.887 | 0.536 | 5.907 | 0.643 | 0.710 | 0.339 | 5.284 | 0.725 | 0.739 | 0.277 | 3.256 | 0.859 | 0.892 | 0.551 | 5.417 | 0.977 | 0.889 | 0.351 | 5.206 | 0.762 | 0.752 | 0.351 | 5.206 | 0.762 | 0.752 |
8 | 0.270 | 3.983 | 0.904 | 0.898 | 0.459 | 5.602 | 0.662 | 0.719 | 0.453 | 7.520 | 0.656 | 0.667 | 0.330 | 5.089 | 0.821 | 0.822 | 0.618 | 7.840 | 0.951 | 0.833 | 0.450 | 7.477 | 0.705 | 0.695 | 0.450 | 7.477 | 0.705 | 0.695 |
50% Missing | ||||||||||||||||||||||||||||
3 | 2.549 | 0.308 | 2.549 | 0.308 | 2.544 | 0.284 | 2.629 | 0.241 | 2.509 | 0.309 | 2.549 | 0.413 | 2.549 | 0.413 | ||||||||||||||
4 | 2.316 | 0.315 | 2.316 | 0.315 | 2.320 | 0.276 | 2.402 | 0.242 | 2.281 | 0.298 | 2.329 | 0.416 | 2.329 | 0.416 | ||||||||||||||
5 | 0.530 | 7.459 | 0.934 | 0.909 | 1.062 | 9.151 | 0.739 | 0.681 | 0.676 | 9.911 | 0.727 | 0.769 | 0.649 | 7.560 | 0.817 | 0.849 | 1.047 | 9.889 | 0.956 | 0.882 | 0.641 | 9.833 | 0.806 | 0.788 | 0.641 | 9.833 | 0.806 | 0.788 |
6 | 0.482 | 7.994 | 0.890 | 0.873 | 0.813 | 9.988 | 0.674 | 0.617 | 0.623 | 10.651 | 0.692 | 0.712 | 0.544 | 8.280 | 0.811 | 0.817 | 0.810 | 10.378 | 0.975 | 0.889 | 0.609 | 10.636 | 0.748 | 0.732 | 0.609 | 10.636 | 0.748 | 0.732 |
7 | 0.468 | 6.852 | 0.880 | 0.874 | 0.837 | 9.566 | 0.548 | 0.572 | 0.553 | 8.662 | 0.665 | 0.668 | 0.496 | 5.633 | 0.756 | 0.813 | 0.819 | 8.253 | 0.976 | 0.886 | 0.552 | 8.461 | 0.698 | 0.680 | 0.552 | 8.461 | 0.698 | 0.680 |
8 | 0.445 | 6.624 | 0.906 | 0.902 | 0.754 | 9.569 | 0.552 | 0.564 | 0.717 | 12.262 | 0.583 | 0.575 | 0.572 | 8.655 | 0.729 | 0.741 | 0.940 | 12.625 | 0.955 | 0.812 | 0.715 | 12.238 | 0.620 | 0.597 | 0.715 | 12.238 | 0.620 | 0.597 |
70% Missing | ||||||||||||||||||||||||||||
3 | 3.892 | 0.236 | 3.892 | 0.236 | 3.892 | 0.208 | 3.993 | 0.148 | 3.886 | 0.229 | 3.905 | 0.316 | 3.905 | 0.316 | ||||||||||||||
4 | 3.626 | 0.246 | 3.626 | 0.246 | 3.631 | 0.205 | 3.722 | 0.149 | 3.602 | 0.232 | 3.691 | 0.302 | 3.691 | 0.302 | ||||||||||||||
5 | 0.861 | 10.692 | 0.929 | 0.915 | 2.442 | 12.843 | 0.528 | 0.588 | 1.040 | 13.696 | 0.664 | 0.730 | 1.157 | 10.940 | 0.718 | 0.809 | 1.584 | 13.426 | 0.948 | 0.881 | 0.990 | 13.556 | 0.753 | 0.754 | 0.990 | 13.556 | 0.753 | 0.754 |
6 | 0.766 | 11.189 | 0.889 | 0.892 | 1.159 | 15.106 | 0.585 | 0.491 | 0.918 | 14.764 | 0.627 | 0.659 | 0.878 | 11.843 | 0.716 | 0.758 | 1.193 | 14.352 | 0.975 | 0.870 | 0.865 | 14.703 | 0.687 | 0.678 | 0.865 | 14.703 | 0.687 | 0.678 |
7 | 0.674 | 9.274 | 0.889 | 0.886 | 1.148 | 13.562 | 0.454 | 0.413 | 0.784 | 12.000 | 0.620 | 0.627 | 0.818 | 8.386 | 0.657 | 0.758 | 1.082 | 11.227 | 0.983 | 0.865 | 0.790 | 11.879 | 0.665 | 0.646 | 0.790 | 11.879 | 0.665 | 0.646 |
8 | 0.704 | 10.252 | 0.893 | 0.877 | 1.130 | 15.104 | 0.455 | 0.440 | 0.969 | 16.683 | 0.572 | 0.543 | 0.900 | 12.410 | 0.636 | 0.667 | 1.320 | 16.337 | 0.966 | 0.806 | 0.970 | 16.682 | 0.596 | 0.544 | 0.970 | 16.682 | 0.596 | 0.544 |
L2PAN
|
L2PAN_LONG
|
RQ
|
RF
|
L2PMM
|
PMM
|
Observed
|
||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
Percent Bias
|
CR
|
|||||||||||||||
Percent Missing | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP | SS | SGP |
MCAR | ||||||||||||||||||||||||||||
30% Missing | 0.077 | 1.963 | 0.928 | 0.925 | 0.101 | 2.559 | 0.878 | 0.840 | 0.169 | 4.477 | 0.766 | 0.672 | 0.108 | 2.403 | 0.888 | 0.857 | 0.164 | 4.463 | 0.880 | 0.794 | 0.168 | 4.427 | 0.808 | 0.681 | 0.168 | 4.427 | 0.808 | 0.681 |
50% Missing | 0.144 | 3.519 | 0.913 | 0.908 | 0.170 | 4.163 | 0.829 | 0.736 | 0.290 | 7.438 | 0.700 | 0.570 | 0.203 | 4.793 | 0.813 | 0.742 | 0.275 | 7.443 | 0.846 | 0.753 | 0.302 | 7.379 | 0.770 | 0.586 | 0.302 | 7.379 | 0.770 | 0.586 |
70% Missing | 0.248 | 5.772 | 0.886 | 0.883 | 0.254 | 6.273 | 0.769 | 0.619 | 0.435 | 10.371 | 0.683 | 0.524 | 0.327 | 7.587 | 0.716 | 0.651 | 0.412 | 10.505 | 0.822 | 0.736 | 0.477 | 10.312 | 0.741 | 0.538 | 0.477 | 10.312 | 0.741 | 0.538 |
MAR (Status with Demographics) | ||||||||||||||||||||||||||||
30% Missing | 0.291 | 3.051 | 0.720 | 0.852 | 0.388 | 4.769 | 0.597 | 0.597 | 0.319 | 4.899 | 0.601 | 0.659 | 0.362 | 3.374 | 0.574 | 0.789 | 0.424 | 5.132 | 0.669 | 0.783 | 0.316 | 4.878 | 0.696 | 0.674 | 0.316 | 4.878 | 0.696 | 0.674 |
50% Missing | 0.513 | 5.044 | 0.635 | 0.848 | 0.696 | 7.427 | 0.472 | 0.487 | 0.563 | 7.895 | 0.503 | 0.579 | 0.646 | 5.915 | 0.429 | 0.703 | 0.725 | 7.998 | 0.598 | 0.766 | 0.567 | 7.911 | 0.611 | 0.601 | 0.567 | 7.911 | 0.611 | 0.601 |
70% Missing | 0.808 | 7.426 | 0.607 | 0.852 | 1.098 | 10.027 | 0.394 | 0.426 | 0.879 | 10.847 | 0.434 | 0.536 | 1.020 | 8.633 | 0.326 | 0.629 | 1.101 | 10.757 | 0.539 | 0.756 | 0.886 | 10.870 | 0.534 | 0.556 | 0.886 | 10.870 | 0.534 | 0.556 |
MAR (Status with Growth) | ||||||||||||||||||||||||||||
30% Missing | 0.669 | 3.446 | 0.371 | 0.843 | 0.737 | 4.549 | 0.286 | 0.639 | 0.693 | 4.879 | 0.276 | 0.650 | 0.760 | 3.500 | 0.263 | 0.794 | 0.873 | 4.985 | 0.353 | 0.776 | 0.668 | 4.892 | 0.340 | 0.667 | 0.668 | 4.892 | 0.340 | 0.667 |
50% Missing | 1.197 | 5.548 | 0.295 | 0.825 | 1.353 | 7.421 | 0.186 | 0.523 | 1.227 | 7.885 | 0.181 | 0.567 | 1.345 | 5.946 | 0.163 | 0.706 | 1.495 | 7.793 | 0.267 | 0.754 | 1.188 | 7.887 | 0.234 | 0.585 | 1.188 | 7.887 | 0.234 | 0.585 |
70% Missing | 1.905 | 7.853 | 0.249 | 0.828 | 2.308 | 10.771 | 0.129 | 0.410 | 1.948 | 10.834 | 0.132 | 0.522 | 2.152 | 8.667 | 0.086 | 0.638 | 2.312 | 10.597 | 0.206 | 0.734 | 1.905 | 10.818 | 0.159 | 0.534 | 1.905 | 10.818 | 0.159 | 0.534 |
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
We replicate the above figures when looking at aggregated school-level results.
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
The following models are preliminary fixed-effects regression models, regressing either raw or absolute bias on (a) school or grade/content area size, (b) percentage missing, (c) missingness type, and (d) imputation method. We include both additive and two-way interaction models. The following models are fit using the fixest
package (Berge, 2018).
Note: The \(R^2\) values for the subsequent models are relatively low. Therefore, inferences should be drawn from these models with caution.
Scale Scores: Additive | Scale Scores: Interaction | SGPs: Additive | SGPs: Interaction | |
---|---|---|---|---|
N | 0.0011 (0.0014) | 0.0308** (0.0084) | 0.0047* (0.0017) | 0.0006 (0.0021) |
MISS_PERC50%Missing | 1.573*** (0.2930) | 1.433*** (0.2609) | -0.1290* (0.0481) | -0.1505* (0.0562) |
MISS_PERC70%Missing | 3.645*** (0.6291) | 2.857*** (0.5872) | -0.2664* (0.0849) | -0.2885** (0.0732) |
MISS_TYPEDEMOG | 3.764*** (0.5795) | 7.324*** (0.3485) | -0.0401 (0.0638) | 0.0451 (0.2141) |
MISS_TYPEGROWTH | 7.886*** (1.499) | 12.38*** (0.6266) | 0.0396 (0.0853) | 0.2381 (0.3322) |
i(var=IMP_METHOD,ref=“Observed”)L2PAN_LONG | -4.267*** (0.8048) | 2.452*** (0.4414) | 0.0022 (0.2487) | 0.0467 (0.1721) |
i(var=IMP_METHOD,ref=“Observed”)L2PAN | -4.787*** (0.9246) | 2.328*** (0.3280) | -0.0994 (0.2040) | 0.0329 (0.0785) |
i(var=IMP_METHOD,ref=“Observed”)RQ | -4.838*** (0.9402) | 2.034*** (0.2855) | -0.2937 (0.2580) | -0.3277 (0.1804) |
i(var=IMP_METHOD,ref=“Observed”)RF | -4.224*** (0.8953) | 2.080*** (0.2746) | -0.2165 (0.2073) | -0.1185 (0.1214) |
i(var=IMP_METHOD,ref=“Observed”)L2PMM | -3.889*** (0.6558) | 1.738*** (0.2426) | -0.4286 (0.2323) | -0.4464* (0.1862) |
i(var=IMP_METHOD,ref=“Observed”)PMM | -4.934*** (0.9876) | 2.128*** (0.3095) | -0.4117 (0.2600) | -0.3897. (0.1901) |
N x MISS_PERC50%Missing | -0.0039* (0.0016) | 0.0016. (0.0007) | ||
N x MISS_PERC70%Missing | -0.0095* (0.0033) | 0.0033* (0.0013) | ||
N x MISS_TYPEDEMOG | -0.0103* (0.0035) | 0.0007 (0.0011) | ||
N x MISS_TYPEGROWTH | -0.0277** (0.0081) | 5.25e-5 (0.0014) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -0.0212*** (0.0038) | -0.0003 (0.0024) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PAN | -0.0152* (0.0050) | 0.0009 (0.0014) | ||
N x i(IMP_METHOD,ref=“Observed”)RQ | -0.0129* (0.0053) | 0.0042 (0.0023) | ||
N x i(IMP_METHOD,ref=“Observed”)RF | -0.0150** (0.0047) | 0.0015 (0.0017) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PMM | -0.0107* (0.0038) | 0.0046. (0.0021) | ||
N x i(IMP_METHOD,ref=“Observed”)PMM | -0.0129* (0.0055) | 0.0044 (0.0025) | ||
MISS_PERC50%Missing x MISS_TYPEDEMOG | 1.608*** (0.2596) | 0.0029 (0.0367) | ||
MISS_PERC70%Missing x MISS_TYPEDEMOG | 3.498*** (0.5972) | -0.0876 (0.1074) | ||
MISS_PERC50%Missing x MISS_TYPEGROWTH | 3.273*** (0.6279) | -0.0061 (0.0446) | ||
MISS_PERC70%Missing x MISS_TYPEGROWTH | 7.555*** (1.338) | -0.0301 (0.1054) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -1.337** (0.3180) | 0.0062 (0.0785) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -2.132* (0.6987) | 0.0268 (0.1653) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN | -1.596** (0.3746) | -0.0518 (0.0733) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN | -3.133** (0.8251) | -0.1188 (0.1581) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)RQ | -1.633** (0.3864) | -0.1083 (0.0914) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)RQ | -3.141** (0.8506) | -0.2158 (0.2051) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)RF | -1.399** (0.3562) | -0.0979 (0.0726) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)RF | -2.581** (0.7695) | -0.1919 (0.1605) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PMM | -1.325*** (0.2875) | -0.1656. (0.0861) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PMM | -2.501** (0.6670) | -0.2828 (0.1611) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)PMM | -1.677** (0.4093) | -0.1557 (0.0923) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)PMM | -3.236** (0.9079) | -0.3005 (0.2025) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -5.343*** (0.7582) | -0.0751 (0.2407) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -7.942** (1.851) | -0.0362 (0.3300) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PAN | -5.929*** (0.8663) | -0.1344 (0.2245) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PAN | -8.249*** (1.858) | -0.2694 (0.3099) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)RQ | -5.799*** (0.8946) | -0.1351 (0.2286) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)RQ | -7.976** (1.809) | -0.2578 (0.3292) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)RF | -5.195*** (0.9000) | -0.1042 (0.2076) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)RF | -7.333** (1.677) | -0.1972 (0.3192) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PMM | -4.771*** (0.5485) | -0.1231 (0.2142) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PMM | -6.562*** (1.306) | -0.2610 (0.3138) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)PMM | -5.929*** (0.9740) | -0.1522 (0.2316) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)PMM | -8.270** (1.921) | -0.3071 (0.3324) | ||
Fixed-Effects: | —————— | ——————- | —————– | —————— |
GRADE^CONTENT_AREA | Yes | Yes | Yes | Yes |
________________________________________ | __________________ | ___________________ | _________________ | __________________ |
S.E.: Clustered | by: GRA.^CON. | by: GRA.^CON. | by: GRA.^CON. | by: GRA.^CON. |
Observations | 97,146 | 97,146 | 52,542 | 52,542 |
R2 | 0.34190 | 0.40344 | 0.00445 | 0.00536 |
Within R2 | 0.28282 | 0.34988 | 0.00349 | 0.00440 |
\(~\)
Scale Scores: Additive | Scale Scores: Interaction | SGPs: Additive | SGPs: Interaction | |
---|---|---|---|---|
N | -0.0085*** (0.0014) | 0.0179* (0.0065) | -0.0146*** (0.0012) | -0.0099** (0.0025) |
MISS_PERC50%Missing | 2.070*** (0.2204) | 2.128*** (0.2390) | 1.443*** (0.0610) | 1.145*** (0.0262) |
MISS_PERC70%Missing | 4.670*** (0.5063) | 4.365*** (0.5163) | 3.047*** (0.1319) | 2.665*** (0.0891) |
MISS_TYPEDEMOG | 2.683*** (0.4104) | 5.761*** (0.3552) | 0.7656*** (0.0493) | 1.442*** (0.1116) |
MISS_TYPEGROWTH | 6.674*** (1.344) | 10.80*** (0.6290) | 1.046*** (0.0810) | 2.505*** (0.1763) |
i(var=IMP_METHOD,ref=“Observed”)L2PAN_LONG | -3.407*** (0.5026) | 1.810*** (0.3659) | 0.9601*** (0.1582) | 0.6862*** (0.1235) |
i(var=IMP_METHOD,ref=“Observed”)L2PAN | -4.251*** (0.7546) | 1.997*** (0.2945) | 0.0555 (0.0931) | 0.6699*** (0.1036) |
i(var=IMP_METHOD,ref=“Observed”)RQ | -3.606*** (0.5816) | 2.552*** (0.4868) | 1.682*** (0.2676) | 2.207*** (0.2058) |
i(var=IMP_METHOD,ref=“Observed”)RF | -3.786*** (0.7501) | 2.127*** (0.3354) | 0.3773. (0.1873) | 1.085*** (0.1501) |
i(var=IMP_METHOD,ref=“Observed”)L2PMM | -3.274*** (0.4794) | 2.260*** (0.4296) | 1.679*** (0.2785) | 2.225*** (0.2329) |
i(var=IMP_METHOD,ref=“Observed”)PMM | -3.569*** (0.6125) | 2.624*** (0.4728) | 1.679*** (0.2739) | 2.195*** (0.2115) |
N x MISS_PERC50%Missing | -0.0053*** (0.0012) | -0.0037*** (0.0005) | ||
N x MISS_PERC70%Missing | -0.0123*** (0.0028) | -0.0082*** (0.0011) | ||
N x MISS_TYPEDEMOG | -0.0042. (0.0023) | -0.0016* (0.0005) | ||
N x MISS_TYPEGROWTH | -0.0191* (0.0071) | -0.0037** (0.0007) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -0.0162*** (0.0023) | 0.0021 (0.0016) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PAN | -0.0163** (0.0038) | 0.0006 (0.0011) | ||
N x i(IMP_METHOD,ref=“Observed”)RQ | -0.0138** (0.0031) | 0.0012 (0.0023) | ||
N x i(IMP_METHOD,ref=“Observed”)RF | -0.0174*** (0.0039) | -0.0004 (0.0018) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PMM | -0.0111** (0.0028) | 0.0024 (0.0025) | ||
N x i(IMP_METHOD,ref=“Observed”)PMM | -0.0144** (0.0033) | 0.0012 (0.0025) | ||
MISS_PERC50%Missing x MISS_TYPEDEMOG | 1.137*** (0.2015) | 0.2287*** (0.0262) | ||
MISS_PERC70%Missing x MISS_TYPEDEMOG | 2.451*** (0.4405) | 0.3606** (0.0896) | ||
MISS_PERC50%Missing x MISS_TYPEGROWTH | 2.696*** (0.6013) | 0.3029*** (0.0479) | ||
MISS_PERC70%Missing x MISS_TYPEGROWTH | 6.167*** (1.265) | 0.5772** (0.1101) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -1.139*** (0.2159) | 0.2995* (0.1037) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -1.827** (0.5001) | 0.5383* (0.2028) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN | -1.482*** (0.3179) | -0.0259 (0.0575) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN | -2.735** (0.6957) | 0.0064 (0.0866) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)RQ | -1.223*** (0.2487) | 0.6679*** (0.1114) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)RQ | -2.316** (0.6035) | 1.097** (0.2132) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)RF | -1.245** (0.2945) | 0.2673* (0.0951) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)RF | -2.230** (0.6350) | 0.5072* (0.1901) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PMM | -1.092*** (0.2144) | 0.6307*** (0.1162) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PMM | -2.030** (0.5285) | 0.9582** (0.2297) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)PMM | -1.190*** (0.2681) | 0.6675*** (0.1159) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)PMM | -2.217** (0.6549) | 1.097** (0.2181) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -4.116*** (0.4859) | 0.0917 (0.1576) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -5.965*** (1.269) | -0.5213* (0.2102) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PAN | -4.801*** (0.6665) | -0.6722*** (0.1123) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PAN | -7.112** (1.604) | -1.273*** (0.1917) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)RQ | -5.068*** (0.7507) | -1.298*** (0.1347) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)RQ | -7.660** (1.753) | -2.276*** (0.1951) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)RF | -4.506*** (0.7761) | -0.9273*** (0.1157) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)RF | -6.971** (1.635) | -1.883*** (0.1616) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PMM | -4.754*** (0.6372) | -1.308*** (0.1173) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PMM | -6.948*** (1.475) | -2.383*** (0.1520) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)PMM | -5.091*** (0.7480) | -1.275*** (0.1372) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)PMM | -7.767*** (1.749) | -2.261*** (0.1950) | ||
Fixed-Effects: | ——————- | ——————- | ——————- | ——————- |
GRADE^CONTENT_AREA | Yes | Yes | Yes | Yes |
________________________________________ | ___________________ | ___________________ | ___________________ | ___________________ |
S.E.: Clustered | by: GRA.^CON. | by: GRA.^CON. | by: GRA.^CON. | by: GRA.^CON. |
Observations | 97,146 | 97,146 | 52,542 | 52,542 |
R2 | 0.33276 | 0.38934 | 0.18317 | 0.19723 |
Within R2 | 0.29642 | 0.35607 | 0.17733 | 0.19149 |
\(~\)
We can also re-fit the scale score models using only observations from grades 5 through 8.
Scale Score Raw Bias: Additive | Scale Score Raw Bias: Interaction | Scale Score Absolute Bias: Additive | Scale Score Absolute Bias: Interaction | |
---|---|---|---|---|
N | 0.0019 (0.0014) | 0.0067. (0.0029) | -0.0080*** (0.0013) | 0.0002 (0.0018) |
MISS_PERC50%Missing | 0.7460*** (0.0896) | 2.059*** (0.1201) | 1.456*** (0.0690) | 2.733*** (0.0768) |
MISS_PERC70%Missing | 1.854*** (0.2536) | 4.262*** (0.2860) | 3.254*** (0.1980) | 5.647*** (0.2431) |
MISS_TYPEDEMOG | 2.147*** (0.1595) | 8.023*** (0.2453) | 1.548*** (0.0822) | 6.570*** (0.2140) |
MISS_TYPEGROWTH | 3.656*** (0.3730) | 13.10*** (0.5265) | 2.917*** (0.1585) | 11.67*** (0.5044) |
i(var=IMP_METHOD,ref=“Observed”)L2PAN_LONG | -6.449*** (0.7746) | 2.986*** (0.4177) | -4.823*** (0.3294) | 2.392*** (0.4104) |
i(var=IMP_METHOD,ref=“Observed”)L2PAN | -7.411*** (0.2719) | 2.719*** (0.1721) | -6.383*** (0.2014) | 2.460*** (0.1342) |
i(var=IMP_METHOD,ref=“Observed”)RQ | -7.501*** (0.2374) | 2.310*** (0.1512) | -5.227*** (0.2408) | 3.721*** (0.2423) |
i(var=IMP_METHOD,ref=“Observed”)RF | -6.774*** (0.2405) | 2.358*** (0.1315) | -5.917*** (0.2000) | 2.678*** (0.2268) |
i(var=IMP_METHOD,ref=“Observed”)L2PMM | -5.747*** (0.2659) | 2.008*** (0.1562) | -4.595*** (0.2846) | 3.298*** (0.2499) |
i(var=IMP_METHOD,ref=“Observed”)PMM | -7.725*** (0.2192) | 2.483*** (0.1346) | -5.269*** (0.2473) | 3.742*** (0.2406) |
N x MISS_PERC50%Missing | 0.0002 (0.0008) | -0.0023** (0.0005) | ||
N x MISS_PERC70%Missing | -0.0009 (0.0020) | -0.0055** (0.0014) | ||
N x MISS_TYPEDEMOG | -0.0019 (0.0015) | 0.0009 (0.0009) | ||
N x MISS_TYPEGROWTH | -0.0059. (0.0029) | -0.0007 (0.0017) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -0.0117* (0.0043) | -0.0101*** (0.0015) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PAN | -0.0020 (0.0015) | -0.0059** (0.0012) | ||
N x i(IMP_METHOD,ref=“Observed”)RQ | 0.0012 (0.0013) | -0.0059* (0.0019) | ||
N x i(IMP_METHOD,ref=“Observed”)RF | -0.0019 (0.0017) | -0.0070** (0.0015) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PMM | -0.0009 (0.0015) | -0.0044* (0.0018) | ||
N x i(IMP_METHOD,ref=“Observed”)PMM | 0.0018 (0.0013) | -0.0061* (0.0022) | ||
MISS_PERC50%Missing x MISS_TYPEDEMOG | 0.9041*** (0.1102) | 0.5824*** (0.0411) | ||
MISS_PERC70%Missing x MISS_TYPEDEMOG | 1.845*** (0.1886) | 1.221*** (0.1025) | ||
MISS_PERC50%Missing x MISS_TYPEGROWTH | 1.494*** (0.1892) | 1.015*** (0.0560) | ||
MISS_PERC70%Missing x MISS_TYPEGROWTH | 3.759*** (0.4948) | 2.593*** (0.2525) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -2.172*** (0.3319) | -1.732*** (0.1532) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -3.613* (1.072) | -2.998** (0.6656) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN | -2.652*** (0.1604) | -2.365*** (0.0976) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN | -5.464*** (0.3735) | -4.677*** (0.2763) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)RQ | -2.716*** (0.1338) | -1.898*** (0.1300) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)RQ | -5.535*** (0.2995) | -3.981*** (0.2943) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)RF | -2.404*** (0.1338) | -2.069*** (0.1049) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)RF | -4.757*** (0.3312) | -4.017*** (0.2755) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PMM | -2.117*** (0.1746) | -1.659*** (0.1598) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PMM | -4.368*** (0.3852) | -3.453*** (0.3944) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)PMM | -2.821*** (0.1336) | -1.911*** (0.1427) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)PMM | -5.795*** (0.3250) | -4.024*** (0.3083) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -7.293*** (0.8623) | -5.412*** (0.4781) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -12.95*** (1.745) | -9.545*** (0.8786) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PAN | -8.377*** (0.2375) | -6.678*** (0.1862) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PAN | -13.52*** (0.5859) | -11.66*** (0.4340) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)RQ | -8.303*** (0.2112) | -7.187*** (0.1673) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)RQ | -13.11*** (0.5569) | -12.64*** (0.4230) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)RF | -7.748*** (0.2094) | -6.712*** (0.2066) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)RF | -12.11*** (0.4668) | -11.63*** (0.4671) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PMM | -6.322*** (0.2525) | -6.566*** (0.2226) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PMM | -10.28*** (0.5286) | -11.16*** (0.4990) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)PMM | -8.652*** (0.1873) | -7.193*** (0.1601) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)PMM | -13.71*** (0.5055) | -12.72*** (0.3912) | ||
Fixed-Effects: | —————— | —————— | ——————- | ——————- |
GRADE^CONTENT_AREA | Yes | Yes | Yes | Yes |
________________________________________ | __________________ | __________________ | ___________________ | ___________________ |
S.E.: Clustered | by: GRA.^CON. | by: GRA.^CON. | by: GRA.^CON. | by: GRA.^CON. |
Observations | 52,542 | 52,542 | 52,542 | 52,542 |
R2 | 0.24881 | 0.37143 | 0.28053 | 0.41316 |
Within R2 | 0.24476 | 0.36804 | 0.27626 | 0.40967 |
In these models, the data are aggregated at the school level.
Scale Scores: Additive | Scale Scores: Interaction | SGPs: Additive | SGPs: Interaction | |
---|---|---|---|---|
(Intercept) | 3.313*** (0.1268) | -2.369*** (0.2377) | -0.1926 (0.1315) | 0.1976 (0.2784) |
N | -0.0023*** (0.0001) | 0.0028*** (0.0004) | 0.0009*** (0.0001) | -0.0007. (0.0004) |
MISS_PERC50%Missing | 1.563*** (0.0875) | 1.642*** (0.2521) | -0.1834* (0.0908) | -0.2607 (0.2953) |
MISS_PERC70%Missing | 3.657*** (0.0875) | 3.611*** (0.2521) | -0.3536*** (0.0908) | -0.3676 (0.2953) |
MISS_TYPEDEMOG | 3.802*** (0.0875) | 8.155*** (0.2521) | -0.0912 (0.0908) | -0.1054 (0.2953) |
MISS_TYPEGROWTH | 7.908*** (0.0875) | 13.73*** (0.2521) | 0.0677 (0.0908) | 0.3147 (0.2953) |
i(var=IMP_METHOD,ref=“Observed”)L2PAN_LONG | -4.773*** (0.1337) | 2.662*** (0.3038) | -0.0923 (0.1387) | -0.2010 (0.3558) |
i(var=IMP_METHOD,ref=“Observed”)L2PAN | -5.254*** (0.1337) | 2.439*** (0.3038) | -0.1684 (0.1387) | -0.2914 (0.3558) |
i(var=IMP_METHOD,ref=“Observed”)RQ | -5.332*** (0.1337) | 2.030*** (0.3038) | -0.5141*** (0.1387) | -0.9991** (0.3558) |
i(var=IMP_METHOD,ref=“Observed”)RF | -4.701*** (0.1337) | 2.155*** (0.3038) | -0.3176* (0.1387) | -0.5147 (0.3558) |
i(var=IMP_METHOD,ref=“Observed”)L2PMM | -4.367*** (0.1337) | 1.723*** (0.3038) | -0.5913*** (0.1387) | -0.9403** (0.3558) |
i(var=IMP_METHOD,ref=“Observed”)PMM | -5.423*** (0.1337) | 2.128*** (0.3038) | -0.6258*** (0.1387) | -1.059** (0.3558) |
N x MISS_PERC50%Missing | -0.0008** (0.0003) | 0.0005 (0.0003) | ||
N x MISS_PERC70%Missing | -0.0020*** (0.0003) | 0.0009** (0.0003) | ||
N x MISS_TYPEDEMOG | -0.0023*** (0.0003) | 5.18e-5 (0.0003) | ||
N x MISS_TYPEGROWTH | -0.0059*** (0.0003) | -0.0003 (0.0003) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -0.0030*** (0.0004) | 0.0005 (0.0005) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PAN | -0.0019*** (0.0004) | 0.0009. (0.0005) | ||
N x i(IMP_METHOD,ref=“Observed”)RQ | -0.0012** (0.0004) | 0.0022*** (0.0005) | ||
N x i(IMP_METHOD,ref=“Observed”)RF | -0.0018*** (0.0004) | 0.0012* (0.0005) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PMM | -0.0009* (0.0004) | 0.0019*** (0.0005) | ||
N x i(IMP_METHOD,ref=“Observed”)PMM | -0.0013** (0.0004) | 0.0022*** (0.0005) | ||
MISS_PERC50%Missing x MISS_TYPEDEMOG | 1.605*** (0.1897) | 0.0484 (0.2222) | ||
MISS_PERC70%Missing x MISS_TYPEDEMOG | 3.477*** (0.1897) | -0.1010 (0.2222) | ||
MISS_PERC50%Missing x MISS_TYPEGROWTH | 3.267*** (0.1897) | 0.1144 (0.2222) | ||
MISS_PERC70%Missing x MISS_TYPEGROWTH | 7.545*** (0.1897) | 0.0560 (0.2222) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -1.516*** (0.2898) | -0.0591 (0.3395) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -2.769*** (0.2898) | -0.1091 (0.3395) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN | -1.763*** (0.2898) | -0.1108 (0.3395) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN | -3.737*** (0.2898) | -0.2709 (0.3395) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)RQ | -1.808*** (0.2898) | -0.2136 (0.3395) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)RQ | -3.750*** (0.2898) | -0.4343 (0.3395) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)RF | -1.563*** (0.2898) | -0.1560 (0.3395) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)RF | -3.177*** (0.2898) | -0.3275 (0.3395) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PMM | -1.495*** (0.2898) | -0.2673 (0.3395) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PMM | -3.114*** (0.2898) | -0.4810 (0.3395) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)PMM | -1.844*** (0.2898) | -0.2588 (0.3395) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)PMM | -3.831*** (0.2898) | -0.5061 (0.3395) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -5.981*** (0.2898) | 0.0619 (0.3395) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -8.810*** (0.2898) | -0.0522 (0.3395) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PAN | -6.540*** (0.2898) | 0.0012 (0.3395) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PAN | -9.037*** (0.2898) | -0.2240 (0.3395) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)RQ | -6.413*** (0.2898) | -0.0047 (0.3395) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)RQ | -8.774*** (0.2898) | -0.2285 (0.3395) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)RF | -5.804*** (0.2898) | 0.0190 (0.3395) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)RF | -8.138*** (0.2898) | -0.2383 (0.3395) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PMM | -5.380*** (0.2898) | 0.0168 (0.3395) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PMM | -7.366*** (0.2898) | -0.2680 (0.3395) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)PMM | -6.542*** (0.2898) | -0.0015 (0.3395) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)PMM | -9.061*** (0.2898) | -0.2591 (0.3395) | ||
________________________________________ | ___________________ | ___________________ | ___________________ | __________________ |
S.E. type | Standard | Standard | Standard | Standard |
Observations | 14,616 | 14,616 | 14,616 | 14,616 |
R2 | 0.46577 | 0.58271 | 0.00730 | 0.01095 |
Adj. R2 | 0.46537 | 0.58131 | 0.00655 | 0.00763 |
Scale Scores: Additive | Scale Scores: Interaction | SGPs: Additive | SGPs: Interaction | |
---|---|---|---|---|
(Intercept) | 3.950*** (0.1186) | -1.758*** (0.2225) | 1.170*** (0.0872) | 0.5429** (0.1833) |
N | -0.0024*** (0.0001) | 0.0018*** (0.0003) | -0.0025*** (8.66e-5) | -0.0007* (0.0003) |
MISS_PERC50%Missing | 1.781*** (0.0819) | 2.096*** (0.2359) | 1.181*** (0.0602) | 0.8555*** (0.1944) |
MISS_PERC70%Missing | 4.109*** (0.0819) | 4.440*** (0.2359) | 2.463*** (0.0602) | 2.056*** (0.1944) |
MISS_TYPEDEMOG | 2.914*** (0.0819) | 7.558*** (0.2359) | 0.6693*** (0.0602) | 1.334*** (0.1944) |
MISS_TYPEGROWTH | 6.925*** (0.0819) | 12.99*** (0.2359) | 0.7760*** (0.0602) | 1.830*** (0.1944) |
i(var=IMP_METHOD,ref=“Observed”)L2PAN_LONG | -4.405*** (0.1251) | 2.158*** (0.2843) | 1.175*** (0.0920) | 0.7827*** (0.2342) |
i(var=IMP_METHOD,ref=“Observed”)L2PAN | -5.100*** (0.1251) | 2.513*** (0.2843) | 0.4012*** (0.0920) | 0.9131*** (0.2342) |
i(var=IMP_METHOD,ref=“Observed”)RQ | -4.729*** (0.1251) | 2.843*** (0.2843) | 1.790*** (0.0920) | 2.246*** (0.2342) |
i(var=IMP_METHOD,ref=“Observed”)RF | -4.508*** (0.1251) | 2.571*** (0.2843) | 0.7818*** (0.0920) | 1.276*** (0.2342) |
i(var=IMP_METHOD,ref=“Observed”)L2PMM | -4.035*** (0.1251) | 2.430*** (0.2843) | 1.801*** (0.0920) | 2.222*** (0.2342) |
i(var=IMP_METHOD,ref=“Observed”)PMM | -4.756*** (0.1251) | 2.942*** (0.2843) | 1.799*** (0.0920) | 2.233*** (0.2342) |
N x MISS_PERC50%Missing | -0.0009*** (0.0003) | -0.0008*** (0.0002) | ||
N x MISS_PERC70%Missing | -0.0021*** (0.0003) | -0.0018*** (0.0002) | ||
N x MISS_TYPEDEMOG | -0.0013*** (0.0003) | -0.0007** (0.0002) | ||
N x MISS_TYPEGROWTH | -0.0043*** (0.0003) | -0.0007*** (0.0002) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -0.0017*** (0.0004) | -8.56e-5 (0.0003) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PAN | -0.0019*** (0.0004) | -0.0007* (0.0003) | ||
N x i(IMP_METHOD,ref=“Observed”)RQ | -0.0012** (0.0004) | -0.0007* (0.0003) | ||
N x i(IMP_METHOD,ref=“Observed”)RF | -0.0020*** (0.0004) | -0.0008* (0.0003) | ||
N x i(IMP_METHOD,ref=“Observed”)L2PMM | -0.0009* (0.0004) | -0.0005 (0.0003) | ||
N x i(IMP_METHOD,ref=“Observed”)PMM | -0.0013*** (0.0004) | -0.0007* (0.0003) | ||
MISS_PERC50%Missing x MISS_TYPEDEMOG | 1.178*** (0.1776) | 0.1787 (0.1463) | ||
MISS_PERC70%Missing x MISS_TYPEDEMOG | 2.622*** (0.1776) | 0.2929* (0.1463) | ||
MISS_PERC50%Missing x MISS_TYPEGROWTH | 2.790*** (0.1776) | 0.2173 (0.1463) | ||
MISS_PERC70%Missing x MISS_TYPEGROWTH | 6.525*** (0.1776) | 0.4116** (0.1463) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -1.445*** (0.2713) | 0.4563* (0.2235) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -2.661*** (0.2713) | 0.7504*** (0.2235) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN | -1.739*** (0.2713) | 0.2199 (0.2235) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PAN | -3.513*** (0.2713) | 0.3497 (0.2235) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)RQ | -1.604*** (0.2713) | 0.7751*** (0.2235) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)RQ | -3.250*** (0.2713) | 1.235*** (0.2235) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)RF | -1.495*** (0.2713) | 0.5149* (0.2235) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)RF | -2.935*** (0.2713) | 0.8630*** (0.2235) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)L2PMM | -1.377*** (0.2713) | 0.7340** (0.2235) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)L2PMM | -2.777*** (0.2713) | 1.149*** (0.2235) | ||
MISS_PERC50%Missing x i(IMP_METHOD,ref=“Observed”)PMM | -1.592*** (0.2713) | 0.7823*** (0.2235) | ||
MISS_PERC70%Missing x i(IMP_METHOD,ref=“Observed”)PMM | -3.192*** (0.2713) | 1.243*** (0.2235) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -5.621*** (0.2713) | 0.2390 (0.2235) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PAN_LONG | -8.104*** (0.2713) | -0.1777 (0.2235) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PAN | -6.477*** (0.2713) | -0.5544* (0.2235) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PAN | -9.054*** (0.2713) | -0.8419*** (0.2235) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)RQ | -6.948*** (0.2713) | -1.022*** (0.2235) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)RQ | -9.620*** (0.2713) | -1.586*** (0.2235) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)RF | -6.072*** (0.2713) | -0.7431*** (0.2235) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)RF | -8.538*** (0.2713) | -1.251*** (0.2235) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)L2PMM | -6.065*** (0.2713) | -1.022*** (0.2235) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)L2PMM | -8.193*** (0.2713) | -1.637*** (0.2235) | ||
MISS_TYPEDEMOG x i(IMP_METHOD,ref=“Observed”)PMM | -7.022*** (0.2713) | -0.9921*** (0.2235) | ||
MISS_TYPEGROWTH x i(IMP_METHOD,ref=“Observed”)PMM | -9.883*** (0.2713) | -1.553*** (0.2235) | ||
________________________________________ | ___________________ | ___________________ | ____________________ | ___________________ |
S.E. type | Standard | Standard | Standard | Standard |
Observations | 14,616 | 14,616 | 14,616 | 14,616 |
R2 | 0.46193 | 0.57924 | 0.19303 | 0.20854 |
Adj. R2 | 0.46153 | 0.57782 | 0.19242 | 0.20588 |
Prior to comparing among the different MI methods, a handful of trends merit comment. First, we find that percent bias tends to increase as the percentage of missingness increases. There also appears to be a greater increase in percent bias (or decrease in the simplified CI coverage rate) as the missingness percentage increases for data MAR with growth compared to the other missingness types. We also see relationships between each of the three dependent variables and the unit size. For example, there is greater variation in percent bias and CI coverage rates for smaller \(N\) values (either at the grade/content area or school level). Similarly, observations with smaller \(N\) values more often also have a simplified \(F_1\) statistic indicating significant differences between the imputed and true values.
The summary tables in Section 2.1 also highlight numerous conditions wherein the CI coverage rates are relatively small. Specifically, the school-level summary shows many coverage rates lower than 0.50 when data are MAR, particularly based on status and growth. Looking at the grade/content area summaries, it seems like these low coverage rates for scale scores are largely driven by grades 3 and 4 when data are MAR based on status and growth. These observations also tend to have higher scale score percent bias than the higher grades. Alternatively, when looking at coverage rates for SGPs, many imputation methods (e.g., RF, L2PMM) showed a negative relationship between coverage rates and grade level, particularly for higher missingness percentages.
Next, we compare results among the examined MI methods. Unlike the “no impact” simulations, there are fewer clear differences in MI efficacy among the imputation methods (holding other factors constant). Still, cross-sectional L2PAN tends to outperform the other methods. For example, compared to other MI methods, L2PAN often shows
Still, there are many conditions where there is not a clear “winner” among the MI methods. For example, in certain cases, L2PAN and L2PMM have similar proportions of significant scale score \(F_1\) statistics at the grade/content area level. Moreover, random forest (RF) and L2PMM often appear to be viable MI options, sometimes showing similar results to L2PAN. However, RF and L2PMM showed some conditions with higher proportions of significant \(F_1\) statistics or lower coverage rates compared to L2PAN.
In the next two sections, we further examine the MI simulation results with either (a) cross-sectional L2PAN or (b) L2PMM. We include L2PMM here because in many cases, this method seemed to perform similarly to L2PAN.
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
Beginning with the imputed scale scores, we find (a) higher percent bias, (b) lower coverage rates, and (c) higher proportions of significant \(F_1\) statistics for lower grades, particularly when data are MAR based on status and growth. We similarly see worse performance when aggregating at the school level for conditions of high missingness with data MAR based on status and growth; these school-level results are likely driven by the scale score imputation for grades 3 and 4. Still, note that the percent bias did not exceed the “problematic” threshold of 5%.
Furthermore, there is evidence of a negative relationship between the \(N\) quantile and scale score coverage rates, as well as a positive relationship between the \(N\) quantile and the proportion of significant \(F_1\) statistics, for grades 3 and 4 when data are MAR. In other words, when data are MAR, observations in grades 3 and 4 are more likely to have lower scale score coverage rates and more significant \(F_1\) statistics when the grade/content area size is in a higher quantile. These latter trends differ from observations in grades 5 and higher, where there is largely no clear relationship between the \(N\) quantile and the given dependent variable.
We next summarize the results for the imputed SGPs with cross-sectional L2PAN. Here, we find evidence of higher percent bias for lower grade/content area size quantiles, particularly among higher grades. For example, the average SGP percent bias reaches around 22% for grade 8 observations in the first \(N\) quantile with 70% of data missing at random based on status and growth. Looking at SGP coverage rates, we don’t find clear trends as a function of grade/content area quantile or grade level. However, we do see that SGP coverage rates are often lower when data are MAR, and the \(F_1\) statistic is more often significant when data are MAR based on status and growth.
Aggregating at the school level, SGP percent bias tends to increase as missingness percentage increases and when data are MAR. Moreover, missingness type seems to have a stronger relationship with SGP coverage rates than missingness percentage, with slightly lower SGP coverage rates among data MAR based on status and growth. Still, the coverage rates don’t fall below 0.80; recall that scale score coverage rates were as low as 0.10, likely as a function of the imputation difficulties with grades 3 and 4. Finally, when examining results at the school level, there is only a noticeable relationship between school size quantile and SGP percent bias, with percent bias decreasing as the \(N\) quantile increases.
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
\(~\)
Many of the trends from the L2PAN results replicated when looking at L2PMM. Starting with the scale scores, there is evidence of higher percent bias for grades 3 and 4 when data are MAR based on status and growth, as well as a general increase in scale score percent bias as the missingness percentage increases. Moreover, we again see substantially lower scale score coverage rates for the lower grades under MAR based on status and growth; the coverage rates decrease for these observations as the grade/content area size quantile increases. When looking at the \(F_1\) statistics for scale scores, a higher proportion are statistically significant for grades 3 and 4, particularly among higher grade/content area size quantiles.
Turning to the SGPs, we again see higher percent bias for higher grades. The SGP coverage rates slightly decrease as the percentage missingness increases, but this relationship is small to negligible. Furthermore, when data are MAR, grade 8 observations often had the highest proportion of significant \(F_1\) statistics for SGPs, particularly for smaller grade/content area size quantiles. Evaluating the results at the school level, we find evidence of a negative relationship between SGP percent bias and school size quantile, as well as evidence of worse performance with L2PMM among higher missingness percentages (holding other factors constant). At the school level, the SGP coverage rates were often lowest in the fourth school size quantile.
The current study focused on the efficacy of multiple imputation for creating “adjusted” scale scores and SGPs among data with a simulated COVID-19 impact. To briefly summarize the above results, we find evidence that MI may be a plausible mechanism for dealing with missing data when
mice
R packageA clear trend throughout these results was that MI struggled to generate accurate scale scores and SGPs when imputing MAR data for grades 3 and 4, particularly when data were missing based on status and growth. In other instances, such as when imputing SGPs, there was higher percent bias for higher grades. These variations indicate that researchers and policymakers should examine MI performance at the grade level when evaluating the method’s accuracy.
It is important to highlight certain limitations of the present simulation study. Specifically, we cannot appropriately generalize our findings beyond the conditions examined in the simulation design. For example, it remains to be seen how L2PAN, L2PMM, and other MI methods perform when data are missing at random based on other characteristics, or are missing not at random (MNAR). If data are MNAR, Jakobsen and colleagues (2017) recommend that analyses be conducted using only the observed cases with an accompanying discussion of the missingness magnitudes (see Figure 1 in Jakobsen et al., 2017).
Although these results shed light on certain conditions wherein MI performs relatively well (in terms of percent bias, simplified CI coverage rate, and the simplified \(F_1\) statistic), it is difficult to clearly pinpoint generalizable thresholds for determining whether MI can be applied to a given data set. Rather, we recommend that descriptive analyses accompany any report on academic status and growth comparisons. These descriptives can include missingness patterns within larger participation analyses, as well as diagnostic checks after imputation to ensure that MI worked relatively well with the data.